

# **4ZeroBox Mobile User Manual**



For more details, visit: www.zerynth.com

This Document is the property of Zerynth (Zerynth S.r.l.). Duplication and reproduction are forbidden if not authorized.

Contents of the present documentation refers to products and technologies described within. All technical data contained in this document may be modified without prior notice The content of this documentation is subject to periodic revision.



# **Table of contents**

| Overview                  | 3  |
|---------------------------|----|
| General Characteristics   | 3  |
| Modular Expansion System  | 4  |
| Screw Description         | 5  |
| Technical Specifications  | 6  |
| Components' Guide         | 8  |
| Dip-Switches              | 14 |
| Pin-Map                   | 17 |
| Pin-Description           | 18 |
| zBUS Pin Description      | 22 |
| Software                  | 23 |
| Zerynth SDK               | 23 |
| Declaration of Conformity | 23 |
| Warnings                  | 23 |
| Instructions for safe use | 24 |



### **Overview**

Easily monitor your assets and acquire data from industrial machines where Wi-Fi and Ethernet connectivity is not available through the integrated Cellular 2G and NB-IoT connectivity In addition to Wi-Fi capabilities.

The **4ZeroBox Mobile** is an Industrial data acquisition device that features Cellular 2G, NB-IOT and Wi-Fi connectivity and GPS capabilities. There are many onboard features like: a DIN-rail mountable case, industrial grade sensor channels, support for Wi-Fi, Relays, support for CAN protocols, RS485, RS232 interfaces.

The 4ZeroBox Mobile can be integrated with any of the Zerynth expansion boards. They can act in concert or individually as a prototype during the development stage, and as a core for industrial applications.

## **General Characteristics**

- ZM1 Module
  - 32-bit dual Core microcontroller based on the ESP32-WROOM-32SE.
  - Clock frequency up to 240 Mhz.
  - Embedded 16 MB SPI Flash memory
  - Integrates the ATECC608A crypto element to allow ultra-secure communication.
  - WiFi (Client and AP mode supported) and Bluetooth® Low-Energy Support
- 6 Analog channels that can measure (dependent on the dip switch configuration):
  - 4-20mA sensors (single ended or differential)
  - 0-10V sensors (single ended or differential)
  - current transformers (non-invasive)
  - resistive sensors (NTC, RTD, contact, proximity, etc.)
- 2 solid state relay channels
  - Max voltage (open circuit) = 36VDC
  - Max current (closed circuit) = 150mA
- RS232 and RS485 Interface.
- Supports CAN Protocol.
- Supports USB-C for PC communication and power.
- USB-C Slot for DEBUG/updating Firmware of BG95
- SMA Antenna for GSM/GPRS (SX) and GPS (DX)
- LiPo Battery support
- JTAG support



## **Modular Expansion System**

Zerynth Development boards offer a game-changing way of connecting and adding functionalities to your application in a simple and easy way.

The development board offers a modular expansion system that adds expansion boards through the connectors on the board (zBUS).

Expansion boards vary in features and functionality. Currently, Zerynth offers :

- **EXP-AIN:** Expansion board with 8 Industrial analog input channels
- **EXP-CONNECT:** GSM-NB-IoT and GPS enabled expansion module.
- **EXP-IO:** Industrial input/output board with 4 solid-state relays, 2 analog channels (4-20mA/0-10V/NTC/current clamp) channels, 2 opto-isolated digital inputs
- **EXP-RELAY:** Expansion board with 6 Electromechanical power relays.
- **EXP-SER:** Serial Communication board with : CAN, RS232 and RS485 interfaces.
- **EXP-PROTO:** Prototyping board for connecting and testing different types of sensors and devices.













# **Screw Description**

| Connector P1                    |      |                                  |  |
|---------------------------------|------|----------------------------------|--|
| Screw Number Symbol Description |      | Description                      |  |
| 1                               | VIN  | External Power Supply 9V-36V     |  |
| 2                               | GND  | Ground pin for Power supply      |  |
| 3                               | CANH | High Channel for CAN Bus         |  |
| 4                               | CANL | Low Channel for CAN Bus          |  |
| 5                               | GND  | Ground Pin                       |  |
| 6                               | B/TX | Signal B of RS485 or TX of RS232 |  |
| 7                               | A/RX | Signal A of RS485 or RX of RS232 |  |
| 8                               | GND  | Ground Pin                       |  |

| Connector P2                    |      |                                                        |  |
|---------------------------------|------|--------------------------------------------------------|--|
| Screw Number Symbol Description |      | Description                                            |  |
| 9,10                            | OUT1 | Screw Terminal of the relay #1 (OUT1 is normally open) |  |
| 11,12                           | OUT2 | Screw Terminal of the relay #2 (OUT2 is normally open) |  |
| 13                              | GND  | Ground Pin                                             |  |
| 14                              | AIN1 | Analog Input Channel #1                                |  |
| 15                              | AIN2 | Analog Input Channel #2                                |  |
| 16                              | AIN3 | Analog Input Channel #3                                |  |
| 17                              | GND  | Ground Pin                                             |  |
| 18                              | AIN4 | Analog Input Channel #4                                |  |
| 19                              | AIN5 | Analog Input Channel #5                                |  |
| 20                              | AIN6 | Analog Input Channel #6                                |  |

**The negative terminal of all analog channels are the GND pins.** GND of analog channels are connected to other GNDs on the board.



# **Technical Specifications**

| Power Supply |             |
|--------------|-------------|
| Voltage      | 9 to 36 Vdc |

| Inputs / Outputs                                          |                                                                            |  |
|-----------------------------------------------------------|----------------------------------------------------------------------------|--|
| ADC Inputs Resolution 11 bit + sign.                      |                                                                            |  |
| 4-20mA Channels - x6 (according to dip-switch positions)  | Min supported input current 4 mA<br>Max supported input current 20 mA      |  |
| 0-10V Channels - x6 (according to dip-switch positions)   | Min supported input voltage 0 V<br>Max supported input voltage 10 V        |  |
| Resistive Channels x6 (according to dip-switch positions) | Min supported Resistor value 0 Ohm<br>Max supported Resistor value 70 KOhm |  |
| Current Channels x6 (according to dip-switch positions)   | Min supported input current -50 mA<br>Max supported input current 50 mA    |  |
| SolidState Relays                                         | Max voltage (open circuit) = 36VDC<br>Max current (closed circuit) = 150mA |  |

**Note:** For each analog channel the user can choose **only one configuration**.

| Environmental Conditions          |                          |  |
|-----------------------------------|--------------------------|--|
| Recommended operating temperature | -20 to +60 °C            |  |
| Humidity                          | Max 80% (not condensing) |  |
| Storage Temperature               | -40 to +85 °C            |  |
| Degree Protection                 | < IP40                   |  |

**IMPORTANT** : operating the device at high temperature for a short period of time is allowed however we strongly recommend operating the device at the *recommended operating temperature.* 



| Connectors                                           |                            |  |
|------------------------------------------------------|----------------------------|--|
| Programming                                          | USB-C Connector            |  |
| SIM Card                                             | Micro SIM Slot             |  |
| Micro SD                                             | Micro SD Slot              |  |
| Power Supply, Sensors, RS485,<br>RS232, CAN, Relays, | Screw Connectors 3mm pitch |  |
| Li-Po Battery                                        | JST Connector              |  |

| Categories         | ltems               | Specifications                                                     |  |
|--------------------|---------------------|--------------------------------------------------------------------|--|
| Certification      | RF Certification    | FCC/CE-RED                                                         |  |
| Certification      | Green Certification | RoHS/REACH                                                         |  |
| Test               | Reliability         | HTOL/HTSL/uHAST/TCT/ESD                                            |  |
|                    |                     | 802.11 b/g/n (802.11n up to 150 Mbps)                              |  |
| Protocols<br>Wi-Fi | Protocols           | A-MPDU and A-MSDU aggregation and 0.4<br>μs guard interval support |  |
|                    | Frequency Range     | 2.4 ~ 2.5 GHz                                                      |  |
|                    | Protocols           | Bluetooth v4.2 BR/EDR                                              |  |
| <b>Bluetooth</b>   |                     | NZIF receiver with –97 dBm sensitivity                             |  |
|                    | Radio               | NZIF receiver with –97 dBm sensitivity                             |  |
|                    |                     | AFH                                                                |  |



# **Components' Guide**

• **Quectel BG95-M3 modem**: BG95 is a series of embedded IoT (LTE Cat M1, LTE Cat NB2 and EGPRS) wireless communication modules. It provides data connectivity on LTE-FDD and GPRS/EGPRS networks, and supports half-duplex operation on LTE networks. It also provides GNSS functionality to meet your specific application demands.

#### Frequency Bands and GNSS Types of BG95 Series Modules

| Supported Bands LTE Bands                                                                                                                                                                                                    | Power Class               | GNSS                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------|
| Cat M1:<br>LTE-FDD:<br>B1/B2/B3/B4/B5/B8/B12/B13/<br>B18/B19/B20/B25/B26/B27/<br>B28/B66/B85<br>Cat NB2:<br>LTE-FDD:<br>B1/B2/B3/B4/B5/B8/B12/B13/<br>B18/B19/B20/B25/B28/B66/B71/<br>B85<br>EGPRS:<br>850/900/1800/1900 MHz | Power Class 5 (21<br>dBm) | GPS,<br>GLONASS,<br>BeiDou,<br>Galileo,<br>QZSS. |

#### **Transmitting Power**

| LTE-FDD bands                                                                    | GSM bands                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class 5 (21 dBm +1.7/-3 dB)<br>Class 3 (23 dBm ±2 dB)<br>Class 2* (26 dBm ±2 dB) | Class 4 (33 dBm ±2 dB) for GSM850<br>Class 4 (33 dBm ±2 dB) for EGSM900<br>Class 1 (30 dBm ±2 dB) for DCS1800<br>Class 1 (30 dBm ±2 dB) for PCS1900<br>Class E2 (27 dBm ±3 dB) for GSM850 8-PSK<br>Class E2 (27 dBm ±3 dB) for EGSM900 8-PSK<br>Class E2 (26 dBm ±2 dB) for EGSM900 8-PSK |
|                                                                                  | Class E2 (26 dBm ±3 dB) for DCS1800 8-PSK<br>Class E2 (26 dBm ±3 dB) for PCS1900 8-PSK                                                                                                                                                                                                    |

#### Main Antenna Interface: Operating Frequency

| 3GPP Band           | Transmit  | Receive   | Unit |
|---------------------|-----------|-----------|------|
| LTE-FDD B1          | 1920–1980 | 2110–2170 | Mhz  |
| LTE-FDD B2, PCS1900 | 1850–1910 | 1930–1990 | MHz  |
| LTE-FDD B3, DCS1800 | 1710–1785 | 1805–1880 | MHz  |
| LTE-FDD B4          | 1710–1755 | 2110-2155 | Mhz  |



| LTE-FDD B5 | GSM850  | 824-849     | 869-894     |
|------------|---------|-------------|-------------|
| LTE-FDD B8 | EGSM900 | 880–915     | 925-960     |
| LTE-FDD    | B12     | 699–716     | 729-746     |
| LTE-FDD    | B13     | 777–787     | 746-756     |
| LTE-FDD    | B18     | 815-830     | 860-875     |
| LTE-FDD    | B19     | 830-845     | 875-890     |
| LTE-FDD    | B20     | 832-862     | 791-821     |
| LTE-FDD    | B25     | 1850–1915   | 1930–1995   |
| LTE-FDD    | B26     | 814-849     | 859-894     |
| LTE-FDD    | B27     | 807-824     | 852-869     |
| LTE-FDD    | B28     | 703–748     | 758-803     |
| LTE-FDD    | B31     | 452.5-457.5 | 462.5-467.5 |
| LTE-FDD    | B66     | 1710-1780   | 2110–2180   |
| LTE-FDD    | B71     | 663-698     | 617-652     |
| LTE-FDD    | B71     | 663-698     | 617-652     |
| LTE-FDD    | B72     | 451-456     | 461–466     |
| LTE-FDD    | B73     | 450-455     | 460-465     |
| LTE-FDD    | B85     | 698-716     | 728-746     |

### GNSS Antenna Interface: GNSS Operating Frequency

| Туре    | Frequency       | Unit |
|---------|-----------------|------|
| GPS     | 1575.42 ±1.023  | MHz  |
| GLONASS | 1597.5-1605.8   | MHz  |
| Galileo | 1575.42 ±2.046  | MHz  |
| BeiDou  | 1561.098 ±2.046 | MHz  |
| QZSS    | 1575.42 ±1.023  | MHz  |



#### Antenna Requirements

| Antenna Type | Requirements                                                                                                                                                                                                                                                                                           |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GNSS         | Frequency range: 1559–1609 MHz<br>Polarization: RHCP or linear<br>VSWR: < 2 (Typ.)<br>Passive antenna gain: > 0 dBi<br>Active antenna noise figure: < 1.5 dB<br>Active antenna gain: > 0 dBi<br>Active antenna embedded LNA gain: < 17 dB                                                              |
| LTE/GSM      | VSWR: $\leq 2$<br>Efficiency: > 30 %<br>Max Input Power: 50 W<br>Input Impedance: 50 $\Omega$<br>Cable Insertion Loss: < 1 dB<br>(LTE<br>B5/B8/B12/B13/B18/B19/B20/B26/B27/B28/B31/B71/B72/B73/B85,<br>GSM850/EGSM900)<br>Cable Insertion Loss: < 1.5 dB<br>(LTE B1/B2/B3/B4/B25/B66, DCS1800/PCS1900) |

#### Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

| Parameter               | Min. | Мах. | Unit |
|-------------------------|------|------|------|
| VBAT_BB                 | -0.5 | 6.0  | V    |
| VBAT_RF                 | -0.3 | 6.0  | V    |
| USB_VBUS                | -0.3 | 5.5  | V    |
| Voltage at Digital Pins | -0.3 | 2.09 | V    |

### **Power Supply Ratings**

| Parameter | Description                                          | Conditions                                                                                     | Min. | Тур. | Max. | Unit |
|-----------|------------------------------------------------------|------------------------------------------------------------------------------------------------|------|------|------|------|
| VBAT      | VBAT_BB/<br>VBAT_RF                                  | The actual input<br>voltages must be<br>kept between the<br>minimum and the<br>maximum values. | 3.3  | 3.8  | 4.3  | V    |
| IVBAT     | Peak supply<br>current (during<br>transmission slot) | Maximum power<br>control level on<br>EGSM900                                                   | -    | 1.8  | 2.0  | A    |
| USB_VBUS  | USB connection<br>detection                          |                                                                                                | -    | 5.0  | -    | V    |



### BG95-M3 Current Consumption (3.8 V Power Supply, Room

| Temperature)                |                                                                      |                                      |                                     |                      |
|-----------------------------|----------------------------------------------------------------------|--------------------------------------|-------------------------------------|----------------------|
| Description                 | Conditions                                                           | Average                              | Peak                                | Unit                 |
| Leakage*                    | Power-off @ USB and UART disconnected                                | 12.99                                | -                                   | μA                   |
| PSM**                       | Power Saving Mode                                                    | 3.89                                 | -                                   | μΑ                   |
| Rock Bottom                 | AT+CFUN=0 @ Sleep mode                                               | 0.575                                | -                                   | mA                   |
| Sleep Mode                  | LTE Cat M1 DRX = 1.28 s                                              | 1.89                                 |                                     | mA                   |
| (USB<br>disconnected)       | LTE Cat NB1 DRX = 1.28 s                                             | 1.49                                 | -                                   | mA                   |
|                             | EGSM900 DRX = 5                                                      | 1.21                                 | -                                   | mA                   |
|                             | DCS1800 DRX = 5                                                      | 1.20                                 | -                                   | mA                   |
|                             | LTE Cat M1<br>e-l-DRX = 81.92 s<br>@ PTW = 2.56 s, DRX = 1.28 s      | 0.63                                 | -                                   | mA                   |
|                             | LTE Cat NB1<br>e-l-DRX = 81.92 s<br>@ PTW = 2.56 s, DRX = 1.28 s     | 0.67                                 | -                                   | mA                   |
| Idle Mode                   | LTE Cat M1 DRX = 1.28 s                                              | 18.9                                 | -                                   | mA                   |
| (USB<br>disconnected)       | LTE Cat NB1 DRX = 1.28 s                                             | 14.8                                 | -                                   | mA                   |
|                             | LTE Cat M1<br>e-l-DRX = 81.92 s<br>@ PTW = 2.56 s, DRX = 1.28 s      | 18.2                                 | -                                   | mA                   |
|                             | LTE Cat NB1<br>e-I-DRX = 81.92 s<br>@ PTW = 2.56 s, DRX = 1.28 s     | 14.3                                 | -                                   | mA                   |
| LTE Cat M1                  | B1 @ 21.29 dBm                                                       | 193.65                               | 491.42                              | mA                   |
| data transfer<br>(GNSS OFF) | B2 @ 20.73 dBm                                                       | 190.76                               | 477.7                               | mA                   |
|                             | B3 @ 20.67 dBm                                                       | 185.89                               | 462.63                              | mA                   |
|                             | B4 @ 20.85 dBm                                                       | 185.14                               | 456.71                              | mA                   |
|                             | B5 @ 21.02 dBm                                                       | 194.99                               | 487.59                              | mA                   |
|                             | B8 @ 21.02 dBm                                                       | 197.31                               | 497.83                              | mA                   |
| data transfer               | B2 @ 20.73 dBm<br>B3 @ 20.67 dBm<br>B4 @ 20.85 dBm<br>B5 @ 21.02 dBm | 190.76<br>185.89<br>185.14<br>194.99 | 477.7<br>462.63<br>456.71<br>487.59 | mA<br>mA<br>mA<br>mA |



|                             | B12 @ 20.96 dBm  | 189.54 |        |    |
|-----------------------------|------------------|--------|--------|----|
|                             | -                | 109.34 | 467.22 | mA |
|                             | B13 @ 20.99 dBm  | 198.75 | 510.51 | mA |
|                             | B18 @ 21 dBm     | 195.07 | 490.61 | mA |
|                             | B19 @ 20.95 dBm  | 197.63 | 502.55 | mA |
|                             | B20 @ 20.92 dBm  | 197.33 | 498.89 | mA |
|                             | B25 @ 21.08 dBm  | 190.67 | 481.36 | mA |
|                             | B26 @ 20.98 dBm  | 195.96 | 493.02 | mA |
|                             | B27 @ 20.69 dBm  | 192.07 | 486.82 | mA |
|                             | B28A @ 20.87 dBm | 192.04 | 482.44 | mA |
|                             | B28B @ 21.03 dBm | 197.39 | 501.64 | mA |
|                             | B66 @ 21.11 dBm  | 188.1  | 471.7  | mA |
|                             | B85 @ 20.87 dBm  | 185.3  | 453.97 | mA |
| LTE Cat NB1                 | B1 @ 20.86 dBm   | 153.2  | 477.37 | mA |
| data transfer<br>(GNSS OFF) | B2 @ 21.28 dBm   | 155.14 | 478.3  | mA |
|                             | B3 @ 21.07 dBm   | 149.14 | 450.59 | mA |
|                             | B4 @ 20.91 dBm   | 147.72 | 449.24 | mA |
|                             | B5 @ 20.55 dBm   | 154.68 | 476.59 | mA |
|                             | B8 @ 21.01 dBm   | 158.82 | 493.93 | mA |
|                             | B12 @ 20.88 dBm  | 148.37 | 452.51 | mA |
|                             | B13 @ 21.09 dBm  | 167.03 | 520.85 | mA |
|                             | B18 @ 20.79 dBm  | 157.12 | 489.47 | mA |
|                             | B19 @ 20.68 dBm  | 156.29 | 489.16 | mA |
|                             | B20 @ 21.01 dBm  | 161.75 | 503.43 | mA |
|                             | B25 @ 21.02 dBm  | 154.16 | 476.58 | mA |
|                             | B28 @ 20.82 dBm  | 147.82 | 458.52 | mA |
|                             | B66 @ 21 dBm     | 148.58 | 459.72 | mA |
|                             | B71 @ 20.81 dBm  | 137.53 | 428.61 | mA |
|                             | B85 @ 20.64 dBm  | 146.51 | 462.26 | mA |



| GPRS data              | GPRS GSM850 4UL/1DL @ 30.5 dBm   | 670.73 | 1535   | mA |
|------------------------|----------------------------------|--------|--------|----|
| transfer (GNSS<br>OFF) | GPRS GSM900 4UL/1DL @ 29.65 dBm  | 623.34 | 1442   | mA |
|                        | GPRS DCS1800 4UL/1DL @ 26.24 dBm | 408.25 | 836.38 | mA |
|                        | GPRS PCS1900 4UL/1DL @ 26.43 dBm | 423.12 | 885.95 | mA |
| EDGE data              | EDGE GSM850 4UL/1DL @ 22.97 dBm  | 519    | 1114   | mA |
| transfer (GNSS<br>OFF) | EDGE GSM900 4UL/1DL @ 22.51 dBm  | 517.59 | 1101   | mA |
|                        | EDGE DCS1800 4UL/1DL @ 22.73 dBm | 439.73 | 919.79 | mA |
|                        | EDGE PCS1900 4UL/1DL @ 22.27 dBm | 443.94 | 922.29 | mA |

\*The current consumption of BG95 series in PSM is much lower than that in power-off mode, and this is due to the following two designs:

- More internal power supplies are powered off in PSM.
- Also, the internal clock frequency is reduced in PSM.

\*\*The module's USB and UART are disconnected and GSM network (if available) does not support PSM.

# GNSS Current Consumption of BG95-M3 (3.8 V Power Supply, Room Temperature)

| Description                                 | Conditions                                  | Тур.   | Unit |
|---------------------------------------------|---------------------------------------------|--------|------|
| Searching                                   | Cold start @ Instrument                     | 70.00  | mA   |
| (AT+CFUN=0)                                 | Host start @ Instrument                     | 73.66  | mA   |
|                                             | Warm start @ Instrument                     | 72.54  | mA   |
|                                             | Lost start @ Instrument                     | 69.24  | mA   |
| Tracking<br>(AT+CFUN=0)                     | Instrument Environment @ Passive<br>Antenna | 22.31  | mA   |
| Open Sky @ Real network, Passive<br>Antenna |                                             | 21.792 | mA   |
|                                             | Open Sky @ Real network, Active<br>Antenna  | 22.357 | mA   |

**Note:** JP1 jumper is dedicated for Quectel BG95 USB\_BOOT signal (internal FW update via dedicated USB-C)

• **MAX3232EIPW:** 3-V to 5.5-V Multichannel RS-232 Line Driver and Receiver with ±15-kV IEC ESD Protection.



- **SN65HVD1786D:** Fault-Protected RS-485 Transceivers With Extended Common-Mode Range
  - $\circ$  ~ The receive / transmit signal is the RTS of serial 1 ~
- MCP2518: CAN FD Controller
  - driven in SPI the chip select is the CTS of serial1
- **TDK InvenSense IIM-42351:** High-Performance 3-Axis SmartIndustrial<sup>™</sup> MEMS Accelerometer for Industrial Applications. **With the following features:** 
  - Digital-output X-, Y-, and Z-axis accelerometer with programmable full-scale range of ±2g, ±4g, ±8g and ±16g
  - $\circ$   $\;$  Low Noise (LN) and Low Power (LP) power modes support  $\;$
  - $\circ$  ~ Wake-on-motion interrupt for low power operation of applications processor
  - Output data rate up to 8 kHz.
- Port Expanders
  - Primary Port expander **NXP PCAL6524** that enables driving D40 to D63 pins.
  - secondary Port expander **NXP PCAL6524** that enables driving D64 to D87 pins.
  - Analog Port expander **ADS7128** that enables driving D88 to D95 pins.
- **Power Supply:** The development board can be powered through the USB type-C connection, 9-36V Power Supply connector P1.

The power circuit automatically detects and uses the available power source but the DC power supply has priority over the USB power supply,

**Note:** all I2C components are compatible with Fast Mode Plus (1 MHz clock frequency)

### **Dip-Switches**

**S1 Switch:** Enables term resistors for CAN Bus.

| PIN | OFF | ON                                                     |  |
|-----|-----|--------------------------------------------------------|--|
| 1   | -   | CANH and CANL are connected through 120ohm resistor    |  |
| 2   | -   | S485A and RS485B are connected through 120ohm resistor |  |
| 3   | -   | Connects RS485B terminal with B/TX terminal            |  |
| 4   | -   | Connects RS485A terminal with A/RX terminal            |  |
| 5   | -   | Connects RS232TX terminal with B/TX terminal           |  |
| 6   | -   | Connects RS232RX terminal with A/RX terminal           |  |

- To expose RS485 on the outer screws: set S1.PIN3 and S1.PIN4 ON
- To expose RS232 on the outer screws: set S1.PIN5 and S1.PIN6 ON
- S1.PIN3 and S1.PIN5 can never be on at the same time
- S1.PIN4 and S1.PIN6 can never be on at the same time



| PIN | OFF                      | ON ON                                     |  |
|-----|--------------------------|-------------------------------------------|--|
| 1   | Connect TX1 to the zBUS  | X1 to the zBUS Connect TX1 to GPS of BG95 |  |
| 2   | Connect TX1 to the zBUS  | Connects TX1 with RS485/RS232             |  |
| 3   | Connect RX1 to the zBUS  | 2BUS Connect RX1 to GPS of BG95           |  |
| 4   | Connect RX1 to the zBUS  | Connects RX1 with RS485/RS232             |  |
| 5   | Connect CTS1 to the zBUS | Connects CTS1 with CS MCP2518             |  |
| 6   | Connect RTS1 to the zBUS | 5 Connects RTS1 with R/T enable RS485     |  |

#### **S2 Switch:** Controls the serial ports connected to the quectel modem

#### Switch Configuration to Enable SERIAl1 for GPS or RS232/RS485

| Dedicate SERIAL1 for GPS |       | Dedicate SERIAL1 for RS232 or RS485 |       |
|--------------------------|-------|-------------------------------------|-------|
| PIN                      | State | PIN                                 | State |
| S2.1                     | ON    | S2.1                                | OFF   |
| S2.2                     | OFF   | S2.2                                | ON    |
| S2.3                     | ON    | S2.3                                | OFF   |
| S2.4                     | OFF   | S2.4                                | ON    |
| S2.5                     | -     | S2.5                                | -     |
| S2.6                     | -     | S2.6                                | -     |

**Note:** If SERIAL1 is also dedicated to the GPS, no more serial ports will be available over the zBUS.

- S2.PIN1 and S2.PIN2 can never be active at the same time
- S2.PIN3 and S2.PIN4 can never be active at the same time
- to use the onboard CAN: Set S2.PIN5 ON
- to use the RS485 onboard: Set S2.PIN6 ON

**Note:** By default, the BG95-M3 uses SERIAL2 of the 4ZeroBox Mobile for communication with the modem, **Don't use it with other expansion boards.** 

#### S3, S4, S5 Switch:

| PIN OFF | ON |
|---------|----|
|---------|----|



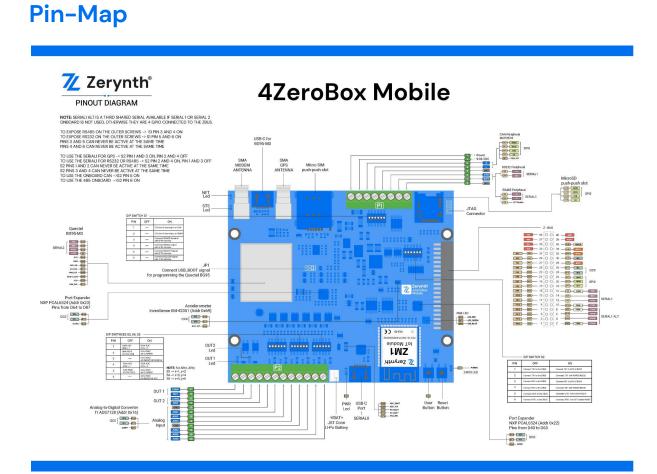
| 1 | Gain ADC AINx = 1    | Gain ADC AINx = 5             |
|---|----------------------|-------------------------------|
| 2 | AINx read as voltage | AINx read as Current          |
| 3 | -                    | AINx read as resistive sensor |
| 4 | Gain ADC AINy = 1    | Gain ADC AINy = 5             |
| 5 | AINy read as voltage | AINy read as Current          |
| 6 | -                    | AINy read as resistive sensor |

Note: S3 Controls AIN1 and AIN2 channels. S4 controls AIN3 and AIN4 channels. S5 controls AIN5 and AIN6 channels.

#### For Voltage measurement - 0 10V standard industrial voltage sensor:

| Switch pin | State |
|------------|-------|
| Sx.1       | OFF   |
| Sx.2       | OFF   |
| Sx.3       | OFF   |

#### For Current measurement - 4-20 mA standard industrial sensor:


| Switch pin | State |
|------------|-------|
| Sx.1       | ON    |
| Sx.2       | ON    |
| Sx.3       | OFF   |

#### For Resistive passive industrial sensor:

| Switch pin | State |
|------------|-------|
| Sx.1       | ON    |
| Sx.2       | OFF   |
| Sx.3       | ON    |



**NOTE:** A Current Clamp (transformer) can be connected using the 4-20mA configuration of the DIP switches exploiting the full input range of  $\pm 20$ mA. That is  $\pm 2$ V across the on-board 100 Ohm resistor which cannot handle power dissipation required by  $\pm 10$ V.



#### LEDs

- Power-on LED.
- zBUS Power-on: Power Supply of the connected expansion board.
- NET: Modem feedback
- STS: Status of BG95
- OUT1 and OUT2: Status of the corresponding relays.
- 3 RGB LEDs Configurable through application code.

#### **Push-Buttons**

- *RST* BTN for resetting the MCU
- USER *BTN* configurable through application code. (connected to D44)



# **Pin-Description**

| Pin-Name | Direction | Function                        | Connected to                                                                         |
|----------|-----------|---------------------------------|--------------------------------------------------------------------------------------|
| D0       | IN        | BOOT                            | Bootstrap pin on ZM1                                                                 |
| D1       | OUT       | TX0 (SERIAL0)                   | USB Serial port                                                                      |
| D2       | IN        | Clear To Send<br>SERIAL2 (CTS2) | CTS2                                                                                 |
| D3       | IN        | RX0 (SERIAL0)                   | USB Serial port                                                                      |
| D4       | OUT       | TX1 (SERIAL1)                   | SERIAL1 Instance                                                                     |
| D5       | OUT       | Ready To Send<br>SERIAL1 (RTS1) | R/T enable of RS485 (according to<br>dip-switch position)<br>SERIAL1 Instance.       |
| D10      | IN/OUT    | Clear To Send<br>SERIAL1 (CTS1) | CS of MCP2518 (according to<br>dip-switch position)<br>SERIAL1 Instance.             |
| D12      | IN        | MISO0 (SPI0)                    | SD Card                                                                              |
| D13      | OUT       | MOSI0 (SPI0)                    | SD Card                                                                              |
| D14      | OUT       | SCK0 (SPI0)                     | SD Card                                                                              |
| D15      | OUT       | CS0                             | CS for MicroSD card                                                                  |
| D16      | IN/OUT    | SDA0 (I2C0)                     | I2C0 Instance                                                                        |
| D17      | OUT       | SCL0 (i2C0)                     | I2C0 Instance                                                                        |
| D18      | OUT       | TX1B                            | SERIAL1 ALT Exposed on zBUS                                                          |
| D19      | IN        | RX1B                            | SERIAL1 ALT Exposed on zBUS                                                          |
| D21      | IN        | ALERT                           | Interrupt of ADS7128 (Analog<br>Channels)                                            |
| D22      | OUT       | RTS1B                           | SERIAL1 ALT Exposed on zBUS                                                          |
| D23      | IN        | CTS1B                           | SERIAL1 ALT Exposed on zBUS                                                          |
| D25      | IN        | INTPX                           | Interrupt pin of secondary port<br>expander NXP PCAL6524<br>(BG95, DOUT, PWR Status) |



| D26 | IN     | ACC_INT                         | Interrupt pin of accelerometer<br>IIM-42351                                                |
|-----|--------|---------------------------------|--------------------------------------------------------------------------------------------|
| D27 | IN     | CAN_INT                         | Interrupt of CAN Controller<br>MCP2518                                                     |
| D32 | OUT    | TX2                             | SERIAL2 Instance.                                                                          |
| D33 | OUT    | Ready To Send<br>SERIAL2 (RTS2) | SERIAL2 Instance.                                                                          |
| D34 | IN     | RX1 (SERIAL1)                   | SERIAL1 Instance.                                                                          |
| D35 | IN     | INTR                            | Interrupt pin Exposed on the zBUS<br>( dedicated native interrupt for<br>Expansion boards) |
| D36 | IN     | RX2 (SERIAL2)                   | SERIAL2 Instance.                                                                          |
| D39 | IN     | INTPE                           | Interrupt pin of primary port<br>expander NXP PCAL6524                                     |
| D40 | OUT    | Blue LED                        | Turn on/off Led Blue                                                                       |
| D41 | OUT    | Green LED                       | Turn on/off Led Green                                                                      |
| D42 | OUT    | Red LED                         | Turn on/off Led Red                                                                        |
| D43 | OUT    | LEDEN                           | Turn on/off Power Led.                                                                     |
| D44 | IN     | USRBTN                          | User Button                                                                                |
| D45 | OUT    | PWREN                           | Enables power supply to EXP boards<br>and on-board components                              |
| D46 | IN     | INTE1                           | Interrupt pin Exposed on the zBUS<br>(dedicated native interrupt for<br>Expansion boards)  |
| D47 | IN     | INTE2                           | Interrupt pin Exposed on the zBUS<br>(dedicated native interrupt for<br>Expansion boards)  |
| D48 | IN/OUT | General Purpose I/O             | PE16                                                                                       |
| D49 | IN/OUT | General Purpose I/O             | PE15                                                                                       |
| D50 | IN/OUT | General Purpose I/O             | PE14                                                                                       |



|     | -      |                     |                                                                                              |
|-----|--------|---------------------|----------------------------------------------------------------------------------------------|
| D51 | IN/OUT | General Purpose I/O | PE13                                                                                         |
| D52 | IN/OUT | General Purpose I/O | PE12                                                                                         |
| D53 | IN/OUT | General Purpose I/O | PE11                                                                                         |
| D54 | IN/OUT | General Purpose I/O | PE10                                                                                         |
| D55 | IN/OUT | General Purpose I/O | PE9                                                                                          |
| D56 | IN/OUT | General Purpose I/O | PE8                                                                                          |
| D57 | IN/OUT | General Purpose I/O | PE7                                                                                          |
| D58 | IN/OUT | General Purpose I/O | PE6                                                                                          |
| D59 | IN/OUT | General Purpose I/O | PE5                                                                                          |
| D60 | IN/OUT | General Purpose I/O | PE4                                                                                          |
| D61 | IN/OUT | General Purpose I/O | PE3                                                                                          |
| D62 | IN/OUT | General Purpose I/O | PE2                                                                                          |
| D63 | IN/OUT | General Purpose I/O | PE1                                                                                          |
| D64 | OUT    | DTR                 | Switch from ppp mode to AT commands mode                                                     |
| D65 | IN     | RING                | Interrupt pin of Modem BG95                                                                  |
| D66 | OUT    | ANT_ON              | Turn on/off GPS antenna                                                                      |
| D67 | IN     | STATUS              | Checks modem status                                                                          |
| D68 | OUT    | PWR_KEY             | Turn on/off the Modem BG95                                                                   |
| D69 | OUT    | RESET_GSM           | Reset the Modem BG95                                                                         |
| D70 | IN     | DCD                 | Checks active connection                                                                     |
| D71 | IN     | PSM_IND             | Power Save Mode indicator                                                                    |
| D72 | IN     | PS_MAIN             | HIGH $\rightarrow$ power supply used is VEXT<br>LOW $\rightarrow$ power is supplied from USB |
| D73 | IN     | ST_BATT             | LOW $\rightarrow$ charging if the battery is connected                                       |



| D74 | IN  | PS_LIPO  | HIGH →Power supply from battery<br>LOW →Power supply according to<br>PS_MAIN |
|-----|-----|----------|------------------------------------------------------------------------------|
| D80 | OUT | DOUT1    | Digital Output 1                                                             |
| D81 | OUT | DOUT2    | Digital Output 2                                                             |
| D88 | IN  | ADC_VBAT | Analog channel for battery level                                             |
| D89 | IN  | ADC_VIN  | Analog channel for External Voltage power supply                             |
| D90 | IN  | AIN1     | Analog channel #1                                                            |
| D91 | IN  | AIN2     | Analog channel #2                                                            |
| D92 | IN  | AIN3     | Analog channel #3                                                            |
| D93 | IN  | AIN4     | Analog channel #4                                                            |
| D94 | IN  | AIN5     | Analog channel #5                                                            |
| D95 | IN  | AIN6     | Analog channel #6                                                            |

**NOTE:** Pins not explicitly mentioned in this table are reserved and cannot be used by the user.

**NOTE:** SERIAL1 alt is a third shared serial available if serial 1 or serial 2 onboard is not used; otherwise, they are 4 native pins connected from the ZM1 to the zBUS

**NOTE:** PCAL6524 primary Port Expander interrupt pin connected to **ZM1** pin D39 driven with I2C at address 0x22.

**NOTE:** PCAL6524 Secondary Port Expander interrupt pin connected to **ZM1** pin D25 driven with I2C at address 0x23.

**NOTE:** Texas Instruments ADS7128 Port Expander interrupt pin connected to **ZM1** pin D21 driven with I2C at address 0x16.

**NOTE:** Crypto Element Microchip ATECC608A driven in I2C at the address 0x35 with our libraries with 7 bit address or 0xC0 with the 8bit one

**NOTE:** Quectel BG95-M3 modem can only be powered with battery or USB. **NOTE:** TDK InvenSense IIM-42351 accelerometer driven in I2C at address 0x69 **NOTE:** ST\_BATT needs the internal pull-up to be able to read it, the other two signals PS\_MAIN and PS\_LIPO do not need to be pulled up, But it is advisable to do so.



# zBUS Pin Description

| PIN-Name | Description                                                          |
|----------|----------------------------------------------------------------------|
| VIN      | External power supply voltage (9-36V)                                |
| RESET    | Reset pin, Active low.                                               |
| PWREN    | enable/disable the power in the zBUS                                 |
| 5V       | Regulated 5V power supply                                            |
| INTE1    | Configurarable interrupt for 4zerobox Mobile on-board port expander. |
| 3V3      | Regulated 3.3V power supply.                                         |
| INTE2    | interrupt for 4ZeroBox Mobile on-board port expander.                |
| PE1-16   | Digital I/O pins connected to the Port Expander                      |
| INTR     | Native Interrupt: user configurable                                  |
| SCL      | I2C Serial Clock                                                     |
| SDA      | I2C Serial Data                                                      |
| MISO     | SPI Master Input Slave Output                                        |
| MOSI     | SPI Master Output Slave Input                                        |
| SCK      | SPI Serial Clock                                                     |
| TX1      | UART/USART 1 Transmit Data                                           |
| RX1      | UART/USART 1 Receive Data                                            |
| RTS1     | UART/USART 1 Request To Send                                         |
| CTS1     | UART/USART 1 Clear To Send                                           |
| TX1B     | UART/USART 1 ALT Transmit Data                                       |
| RX1B     | UART/USART 1 ALT Receive Datal                                       |
| RTS1B    | UART/USART 1 ALT Request To Send                                     |
| CTS1B    | UART/USART 1 ALT Clear To Send                                       |



### Software

Zerynth SDK provides software libraries for each board, alongside API documentation and examples. Please check the Hardware section for more information. <u>https://docs.zerynth.com/latest/hardware/</u>

# Zerynth SDK

Zerynth platform is designed to simplify and accelerate the development of IoT applications. Zerynth offers tools for developers, system integrators, and businesses to enable IoT for their products, rapidly in a secure and connected way.

**Zerynth SDK** is the official development framework for Zerynth hardware, It includes a compiler, device drivers and libraries drivers, In addition to simple tutorials, example codes, and application examples.

Zerynth SDK and all the required libraries can be installed on Windows, Linux and Mac using the Zerynth Installer (<u>https://www.zerynth.com/zsdk</u>).

## **Declaration of Conformity**

IMPORTANT: KEEP THIS INFORMATION FOR FUTURE REFERENCE. FOR FULL SET UP AND INSTALLATION INSTRUCTIONS PLEASE VISIT <u>docs.zerynth.com</u>

### Warnings

- All external power supplies used with Zerynth boards must comply with the relevant regulations and standards applicable in the country of use and must provide a voltage between 9 and 36 VDC.
- The manufacturer cannot guarantee compliance with the RED directive if the end user uses custom circuits other than those supplied by Zerynth (used in conformity tests).
- All boards that require CE marking have been tested and meet the essential requirements set by the Directives: 2014/53/EU (RED), 2014/35/EU (LVD), 2014/30/EU (EMC),2011/65/UE (RoHS). The declaration of conformity (DoC) can be downloaded from the website <u>https://www.zerynth.com/download/26799/</u>
- All Zerynth boards have undergone compliance testing for conducted and radiated emissions meeting the requirements of the following standards: FCC Part 15 B and IC ICES-003.
- Any device or component connected to one of the connectors of the 4ZeroBox Mobile must comply with the electrical characteristics defined in the specifications described in the complete manual to ensure that the performance and safety requirements are met.



• Each cable used to connect other devices or components to the Zerynth boards must be less than 300 cm long and must offer adequate insulation and operation so that the appropriate performance and safety requirements are met.

# Instructions for safe use

- Do not expose this product to water or moisture and do not place it on a conductive surface while it is operating.
- Do not expose this product to excessive heat sources which could cause it to operate outside the permitted temperature range defined in the specifications (-40, +85 ° C).
- Be careful when handling the product to avoid mechanical or electrical damage to the printed circuit board and connectors.
- If a board looks damaged, do not use it.
- Do not touch the printed circuit board when it is powered on and never operate on live electrical parts.
- The printed circuit board must not come into contact with conductive objects when it is powered on.
- Discharge static electricity from your body and touch only the edges of the board to minimize the risk of damage from electrostatic discharge.



#### EN - Waste Electrical and Electronic Equipment (WEEE) Symbol

The use of the WEEE symbol indicates that this product/board may not be treated as household waste. By ensuring this product/board is disposed of correctly, you will help protect the environment. For more detailed information about recycling of this product/board, please contact your local authority, your household waste disposal service provider or the shop where you purchased it.